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Abstract
We study the ground-state fidelity and entanglement of a Bose–Fermi mixture loaded in a
one-dimensional optical lattice. It is found that the fidelity is able to signal quantum phase
transitions between the Luttinger liquid phase, the density-wave phase, and the phase separation
state of the system, and the concurrence, as a measure of the entanglement, can be used to
signal the transition between the density-wave phase and the Ising phase.

(Some figures in this article are in colour only in the electronic version)

Ultra-cold atomic gases loaded in an optical lattice are
attracting more and more attention as a way of gaining
deep insight into some essential physical phenomena, such as
quantum phase transitions (QPTs) [1], in condensed matter
physics. The prediction [2] and successful observation [3] of
a QPT from a superfluid to a Mott-insulator was one of the
greatest achievements in this field. Quite recently, promising
experimental progress has been made in the study of more non-
trivial quantum phases in cold atomic systems. For example,
bosonic and fermionic atoms can simultaneously be trapped
in an optical lattice in a controllable way [4]. This ultra-
cold atomic system, the so-called Bose–Fermi mixture, often
reminds people of solid state systems including the electron–
phonon interaction. The latter have been studied for a long
time and have a complicated quantum phase diagram. So the
exploration of possible new phases in Bose–Fermi mixtures
becomes an interesting theoretical problem. Several works had
been done on this [5–7, 9–14]. It is worthwhile mentioning that
Pollet et al recently studied the ground-state phase diagram of a
Bose–Fermi mixture loaded in a one-dimensional (1D) optical
lattice by using quantum Monte Carlo (QMC) simulations [13].
Several phases, including a Luttinger liquid (LL) phase, a
density-wave (DW) phase, a phase separation (PS) state, and
an Ising phase, are predicted.

In recent years, some emerging concepts in quantum
information theory [15] have been extensively used to
study critical phenomena in quantum many-body systems. A
typical example is entanglement. Many efforts have been
made to understand the relation between entanglement and
QPTs [16–19]. Quite recently, the fidelity, as a measure of
similarity between states, was proposed as a means of studying
the critical phenomena. The motivation is very simple: a
dramatic change in the structure of the ground state around
the quantum critical point should result in a great difference
between the two ground states on the both sides of the critical
point. Fidelity has been successfully applied in the study of
spin, fermionic, and most recently bosonic systems [20–28].
Compared with entanglement, fidelity is a purely geometrical
quantity; an obvious advantage is that in analyzing QPTs it
does not require a priori knowledge of the order parameter and
the symmetry of the system.

In this paper we study the ground-state fidelity and
the entanglement of a Bose–Fermi mixture in a 1D optical
lattice. The aim is to explore the role of fidelity and
entanglement in a more realistic system. As shown in many
examples [16, 17, 19], there exists a strong connection between
entanglement and the QPT. However, the nature of the relation
is still unclear so the current study will shed some light on
this important issue. Following Pollet et al [13], we assume
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that a mixture of bosonic and fermionic atoms is loaded into a
1D optical lattice, and the temperature is low enough such that
quantum degeneracy is achieved. The system is then described
by a lowest-band Bose–Fermi Hubbard model,

H = −
N∑

i=1

(tFc†
i ci+1 + tBb†

i bi+1 + H.c.)

+ UBF

N∑

i=1

c†
i ci b

†
i bi + UBB

N∑

i=1

b†
i bi(b

†
i bi − 1), (1)

where bi (b†
i ) and ci (c†

i ) are the bosonic and fermionic
annihilation (creation) operators, respectively, at site i . Bosons
(fermions) can hop from site i to the nearest neighbor site
i ± 1 with tunneling amplitude tB (tF). Furthermore, a large
occupation of bosons on a single site is suppressed by the
on-site repulsion interaction UBB. Bosons and fermions can
mutually repel or attract each other on each site depending
on the sign of UBF. In this paper, we choose UBF > 0, and
consider the case where both the bosons and the fermions have
a density: NF = NB = N/2.

We now briefly discuss the ground-state phase diagram of
the model [13]. When the UBF is small enough, the fermions
behave as a LL, and interaction between them is induced by the
bosons. At the same time, the bosons form an interacting liquid
too. So we have a LL of fermions, which weakly interacts with
a boson liquid. When UBB is small and UBF is large, the system
is to first order unstable to the PS with hard domain walls;
in other words the system is separated into two regions—a
bosonic region and a fermionic region. When both UBB and
UBF are very large, the bosons behave as fermions, which
means that occupation by more than one boson at a single site
is not allowed. The model can then be mapped into the 1D
XXZ model: HXXZ = ∑

i J (σ x
i σ

x
i+1 + σ

y
i σ

y
i+1) + J zσ z

i σ
z
i+1,

where J = −(tBtF)/UBF and J z = (t2
B + t2

F)/(2UBF) −
t2
B/(2UBB) [29]. This implies that there are three phases in

this limit: the ferromagnetic phase, a gapless DW phase and a
gapped Ising phase. In the ferromagnetic phase, boson–boson
bonds and fermion–fermion bonds are favored compared with
boson–fermion bonds due to the larger exchange interactions;
this mechanism makes the system form two regions with hard
domain walls. So the ferromagnetic phase corresponds to PS
in the mixture. This mechanism is similar to the one appearing
in the 1D asymmetric Hubbard model [30, 31] where PS also
occurred when the system was away from half-filling. In the
DW phase and Ising phase, the system always favors boson–
fermion bonds. We would like to emphasize that the PS in the
large UBB limit and that in the small UBB limit are different,
since that the latter allows the occupation of more than one
boson at a single site. In the whole PS region, with increasing
of UBB, the boson repulsion exerts a pressure such that the
region occupied by the bosons will grow and at the same time
the local density of bosons will decrease.

As mentioned before, the fidelity is the modulus of the
overlap of two ground states relative to two different choices
of the Hamiltonian parameters. In this paper, we mainly focus
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Figure 1. The obtained fidelity F(2δUBF,UBF,UBB) when
tF = 4.0, tB = 1.0, δUBF = 0.5. It can be observed that there are two
phase transition boundary lines indicated by the drop in the fidelity.
Phases such as LL, DW and PS are identified by comparing this
phase diagram with the one which was proposed earlier from the
calculation of the correlation functions (see text). N = 8 (APBC).

on these two:

F(2δUBF,UBF,UBB) = |〈ψUBF−δUBF |ψUBF+δUBF 〉|, (2)

F(2δUBB,UBF,UBB) = |〈ψUBB−δUBB |ψUBB+δUBB 〉|, (3)

in which |ψλ〉 stands for the ground state of the Hamiltonian (1)
with the parameter λ, and is calculated by the Lanczos method
for a finite sample. The Lanczos method is a numerical recipe,
which is based on the Kylov subspace, for calculating some
eigenvectors of a large sparse matrix. The basic idea of the
Lanczos method is that a special basis can be constructed
where the Hamiltonian has a tridiagonal representation. Once
in this form the matrix can be diagonalized easily using
standard library subroutines. One of the advantages of this
technique is that ground-state properties can be obtained
accurately well before the rest of the matrix eigenvalues are
evaluated by systematically improving a given variational state
that is used to represent the ground state of the system. Thus
the method is very suitable for the analysis of the fidelity in
this model. In spite of these advantages, memory limitations
impose severe restrictions on the size of the clusters that can
be studied with this method [32]. To avoid the ground-state
level crossing, anti-periodic boundary conditions (APBCs) are
applied for system size N = 4n and periodic boundary
conditions (PBCs) for N = 4n + 2, where n is an integer.
According to the original idea of fidelity, a drop in the
fidelity of two ground states separated by two slightly different
parameters is expected to be a signature of a QPT.

In figure 1 we show one of our main results, i.e. the
fidelity F(2δUBF,UBF,UBB) defined on the UBB–UBF plane.
Compare this figure with figure 4 of [13]; perfect similarity
can be observed. The boundary lines of phase transitions
between the LL, the DW and the PS are clearly indicated by
a decreased fidelity. We would like to emphasize that the phase
diagram presented here is obtained for a very small cluster
and without any knowledge of the correlation properties of the
system. It is also clearly observed that the drop of the fidelity
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along the phase transition line between the DW and PS phases
becomes steeper and steeper as the interaction decreases. This
phenomenon indicates that although the phase transition is
within the same class but the similarity of the ground state is
changing along this line.

However, the phase transition, as reported in [13], between
the DW and the Ising phases is not indicated in figure 1.
According to the effective model, i.e. the 1D XXZ model, this
transition belongs to the KT universality class [13, 33]. Lode
Pollet et al [13] did numerical calculations of the correlation
functions in a somewhat larger system (N ∼ 30) by QMC
simulations and claimed that a true long-range order may
exist in the Ising phase. It is very difficult for us to make a
scaling analysis of the correlation functions by the Lanczos
method. However, the 1D XXZ [34] model provides us with
a clue to investigate this problem. It was reported that the
concurrence [35], as a measure of entanglement between two
qubits, reaches a maximum at the SU(2) point [17] of the XXZ
model. This maximum point corresponds to the transition point
between the DW and the Ising phases.

The concurrence in the spin models can be calculated in
the following way. Due to the global SU(2) symmetry of the
XXZ model, the z-component of the total spin of the system is
a good quantum number and the reduced density matrix ρi,i+1

of two neighboring spins has the form

ρi,i+1 =
⎛

⎜⎝

u+ 0 0 0
0 w z∗ 0
0 z w 0
0 0 0 u−

⎞

⎟⎠ , (4)

in the spin basis |↑↑〉, |↓↑〉, |↑↓〉, |↓↓〉. The elements in
the reduced density matrix ρi,i+1 can be obtained from the
correlation functions

u± = 1
4 (1 ± 2〈σ z

i 〉 + 〈σ z
i σ

z
i+1〉), (5)

w = 1
4 (1 − 〈σ z

i σ
z
i+1〉), (6)

z = 1
4 (〈σ x

i σ
x
i+1〉 + 〈σ y

i σ
y

i+1〉 + i〈σ x
i σ

y
i+1〉 − i〈σ y

i σ
x
i+1〉). (7)

All the information needed is contained in the reduced density
matrix, from which the concurrence is readily obtained as [36]

C = 2 max
[
0, |z| − √

u+u−
]
, (8)

which can be expressed in terms of the correlation functions
and the magnetization by using equations (5)–(7).

The concurrence is only valid for a two-qubit system. For
the Bose–Fermi Hubbard model, the double occupation of two
particles is almost not allowed in the strong coupling limit,
and the state of the two neighboring sites can be described
by a four basis | f f 〉, |bf 〉, | f b〉, |bb〉 where f (b) represents
that there is only one fermion (boson) on a single site. So
we can associate a pseudo-spin ‘up’ (‘down’) with ‘ f ’(‘b’).
Then the equations described above can also be perfectly
applied to the Bose–Fermi Hubbard model. In other words,
if we calculate the trace of the reduced matrix of two nearest
sites, which reads T = Tr ρi,i+1, then T must equal to 1 in
this limit. While T only approximately equals 1, when UBB
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Figure 2. The obtained concurrence in the DW phase where
tF = 4.0, tB = 1.0. The concurrence of N = 6 (N = 8) was been
reduced by 0.029 (0.009) in order to make the results fall in the same
region in the figure. T is defined as the trace of the reduced density
matrix of two neighboring (pseudo-) spins (see text). All other
parameters are indicated in the figure.

and UBF are not infinite but large. As long as (1 − T ) is
small enough, the concurrence calculated by equation (8) is
a good characterization of entanglement between two sites.
In this way, we are able to make an approximate calculation
of the concurrence in the Bose–Fermi mixtures. This kind
of treatment was also used by another group recently [37].
Obviously, as expected, a maximum is clearly observed in the
behavior of the concurrence, which indicates a QPT point. It is
important to point out that the variation of the concurrence is
not dramatic in the whole DW region. Using the exact solution
of the XXZ chain, a phase transition from the DW phase to
the Ising phase should occur at −J = J z , i.e. UBB = 6.7 for
tF = 4.0, tB = 1.0,UBF = 60. But according to the obtained
concurrence, the maximum point U max

BB equals approximately
7.7. The discrepancy may arise from two effects. One is that
the hard-core limit is not fully satisfied in the whole DW phase
region, so the phase transition point of the system is not exactly
equal to the one indicated by the XXZ model. The other one
is the size effect. From figure 2, it can be observed that the
maximum point of concurrence is closer and closer to 6.7 when
the system size is increased. As a result, we think that the phase
transition point of the system is somewhere between 6.7 and
7.7.

We calculated the fidelity F(2δUBB,UBF,UBB) which is
also able to signal the transition between the PS phase and
the DW phase. As one can see in figures 3(a) and (b), the
most dramatic drop in the fidelity is in correspondence with
the phase transition point between the PS state and the DW
phase. The critical point found here is consistency with the
one found in figure 1. In addition, more drops in the fidelity
can be observed in the PS region. These drops are related to
the changing rate of the local density of the boson. To show
this, we define the local density of the boson as,

DB =
〈

1

N

N∑

i=1

b†
i bi(b

†
i bi − 1)

〉
, (9)
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Figure 3. The obtained fidelity F(2δUBB,UBF,UBB) ((a), (b)) and
the first order derivative of the local density of boson (see text) ((c),
(d)) when tF = 4.0, tB = 1.0,UBF = 60.0. All other parameters are
indicated in the figure.

and calculate its first order derivative. Comparing figures 3(a)
and (b) with figures 3(c) and (d), respectively, it can be seen
that every drop in the fidelity is accompanied by a drop in the
derivative of the local density of bosons. This relation can be
understood by considering that the dramatic change of the local
density of bosons leads to a big change in the ground-state
wavefunction, and then makes the fidelity decrease greatly.
These observations imply that the transition between PS phase
and the DW phase is within the Landau symmetry breaking
theory. Furthermore, it is easy to notice that the drops found
in the PS phase is strongly affected by the system size and the
boundary conditions, while the phase transition point between
PS phase and DW phase is not. We may conclude that
these drops are size effects and cannot be identified as phase
transition points. However, the transition between the DW
phase and the Ising phase is still not indicated.

By careful analyzing the data we have, the missing phase
transition signature in the fidelity between the DW phase and
the Ising phase can be attributed to two reasons. The first is
that this kind of transition is actually a very weak one, which
means that the change in the ground state around the critical
point is not dramatic, at least in a finite-sized system. The
second is that, as reported before, the fidelity may not be a
good indicator of infinite order phase transitions, such as the
KT transition [24].

In summary, we have calculated the fidelity F(2δUBF,

UBF,UBB) and F(2δUBB,UBF,UBB) of the 1D Bose–Fermi
Hubbard model, which can be used to describe low-
temperature physics of atomic Bose–Fermi mixtures loaded
in 1D optical lattices. It was shown that the fidelity may
be a good tool with which to study the complicated phase

diagram without a priori knowledge of the order parameter and
the symmetry of the system. However, caution is called for
when one deals with the KT-like phase transition, for which
the fidelity may not signal the transition, for example, the
transition between the DW phase and the Ising phase in this
system. We also calculated the concurrence in the DW phase.
The result indicated that a QPT may exist in the DW phase.
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